設定判別暗算・サクセション編(低96-高97)

初版1999年2月1日
述懐録版2006年9月25日

サクセション(エレクトロコイン・ジャパン)の巻


8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208
-2











117 126 135 144 153 162 171 180 189 198 207 216 225 234 -2
-1









100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 -1
0








92 101 110 119 128 137 146 155 164 173 182 191 200 209 218 227 236 0
1






75 84 93 102 111 120 129 138 147 156 165 174 183 192 201 210 219 228 237 1
2





67 76 85 94 103 112 121 130 139 148 157 166 175 184 193 202 211 220 229 238 2
3



50 59 68 77 86 95 104 113 122 131 140 149 158 167 176 185 194 203 212 221 230 239 3
4


42 51 60 69 78 87 96 105 114 123 132 141 150 159 168 177 186 195 204 213 222 231 240 4
5
25 34 43 52 61 70 79 88 97 106 115 124 133 142 151 160 169 178 187 196 205 214 223 232 241 5
6 17 26 35 44 53 62 71 80 89 98 107 116 125 134 143 152 161 170 179 188 197 206 215 224 233 242 6

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208

 上の表は,サクセションの設定5以上判別の判別ゲーム数の早見表である。表の見方については,ハナビのほうを参照して下さい。

 サクセションの5以上判別では,設定4との減算の値が96と97で差が狭く,スプレーの角度が狭いので,ハナビようには使えないけど一応いってみましょう。

払い出し判別ゲーム条件
9n8n-2nは13以上の整数
9n+18n-1nは11以上の整数
9n+28nnは10以上の整数
9n+38n+1nは8以上の整数
9n+48n+2nは7以上の整数
9n+58n+3nは5以上の整数
9n+68n+4nは4以上の整数
9n+78n+5nは2以上の整数
9n+88n+6nは1以上の整数

 いずれも,払い出し枚数と判別ゲーム数の差はn+2となる。

払い出し枚数が99と108を除く92枚以上のとき,その払い出し枚数に10を足したものを9で割り,割り切れなかったら切り上げしたものを,払い出し枚数から引いたものが判別ゲーム数となる。

 計算例は,

 96枚の払い出し・・106/9 = 11.?? = 12,96-12 = 84ゲーム目

 134枚の払い出し・・144/9 = 16,134-16 = 128ゲーム目

 やっぱり,実用性に欠けるなあ。上の囲みの払い出し枚数の条件でなくても,とにかく払い出し枚数が判別可能(早見表にある数字)なら,法則に当てはまる。

 特に,払い出しの各桁の総和が8,17のときは8以外で法則に当てはまる。例:26,44,98。これは,9の倍数の各桁の総和が9の倍数になることの応用である。


練習

 乱数生成ボタンを押すと92から200までの乱数が現れます。この数字を払い出し枚数として,判別ゲームを右側のテキストボックスに入力して解答ボタンを押すと,正誤判定をします。

枚の払い出しのときの判別はゲーム目である。

このページに載っていることを運用した結果についての責任は一切負いません。

戻る ・ 回胴述懐録トップ

テレワークならECナビ Yahoo 楽天 LINEがデータ消費ゼロで月額500円〜!
無料ホームページ 無料のクレジットカード 海外格安航空券 海外旅行保険が無料! 海外ホテル